Building AI's Temporal Memory Part I: Data Retrieval Methods
Scoping methods for efficient Key-Value dataset Retrieval.
{
27-01-2026:09:09: {
np.array([...])
}
}# Session Base Dataset
class GenerateCodeDtypeConfig(Enum):
""" Configuration for generating code based on data types. """
pandasDtype = {
"bool": "OBO", # boolean
"datetime": "ODT", # datetime64[ns], datetime64[ns, tz]
"timedelta": "ODT", # treat as time-like; keep same family if desired
"numeric": "NCO", # all numeric (int/float) without value-based splitting
"category": "CBI", # pandas 'category' dtype (categorical)
"string": "OTX", # pandas StringDtype
"object": "OTX", # object (often text/categorical; we treat as text to avoid heuristics)
"None": "OUK" # unknown / other dtypes
}
categoryCode = {
"numerical": "N",
"categorical": "C",
"others": "O"
}
subCode = {
"continuous": "NC",
"discrete": "ND",
"nominal": "NN",
"ordinal": "NO",
"binary-label": "CB",
"multi-label": "CM",
"datetime": "OD",
"geospatial": "OG",
"text": "OT",
"boolean": "OB",
"identifier": "OI",
}
fieldPattern value displays the combined pattern and child data type categories.Last updated
Was this helpful?

